The age and vertebrate paleontology of Labor-of-Love Cave, White Pine County, Nevada

STEVEN D. EMSLIE1,* AND JIM I. MEAD2,3

1Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403
2The Mammoth Site, Hot Springs, SD 57747
3Research Laboratory at Tumamoc Hill, University of Arizona, Tucson, AZ 85721

ABSTRACT.—We report the first radiocarbon ages on vertebrate fossils from Labor-of-Love Cave, White Pine County, Nevada, based on purified collagen in teeth and bone, as well as a description of the cave’s vertebrate paleontology. This cave was discovered in 1982 with the recovery of an associated partial skeleton of the extinct giant short-faced bear (Arctodus simus). Subsequent excavations in 1985 recovered additional fossil material of birds and mammals from stream deposits in the cave. These fossils, along with fossils collected from the surface during surveys in 2018, are reported here. Radiocarbon ages indicate that most fossil material was deposited in the cave before and during the Last Glacial Maximum (LGM; 21,441–27,774 cal yr BP) and eroded from stream deposits inside the cave following the LGM, presumably from increased precipitation and stream flow. The vertebrate assemblage includes 4 other extinct taxa including 1 carnivore (Panthera atrox) and 3 ungulates (Equus sp., Oreamnos harringtoni, Euceratherium collinum) and the first record of Canada lynx (Lynx canadensis) from the Great Basin. If contemporaneous, the assemblage as a whole indicates an open grassland/sagebrush/tundra environment in Spring Valley during the late Pleistocene, with coniferous forest on mountain slopes facing this valley and where the cave is situated. Although the entrance to the cave is now blocked by slumped talus and breakdown, in the Pleistocene it was likely a large accessible opening at the base of a limestone cliff, with stream flow emerging and flowing into the valley below during the late Pleistocene, when bears and other species possibly used the cave as a shelter or den.

RESUMEN.—Reportamos las primeras edades de radiocarbono en fósiles de vertebrados de Labor-of-Love Cave, White Pine County, Nevada, basados en colágeno purificado en dientes y huesos, así como una descripción de su paleontología de vertebrados. Esta cueva fue descubierta en 1982 con la recuperación de un esqueleto parcial asociado del extinto oso gigante de cara corta (Arctodus simus). Excavaciones posteriores en 1985 recuperaron material fósil adicional de aves y mamíferos de depósitos de arroyos en la cueva y, junto con los fósiles recolectados de la superficie durante los estudios en 2018, se informan aquí. Las edades de radiocarbono indican que la mayoría del material fósil se depositó en la cueva antes y durante el Último Máximo Glacial (UMG; 21,441–27,774 cal AP) y se erosionó de los depósitos de la corriente dentro de la cueva después de la LGM, presumiblemente por el aumento de la precipitación y el flujo de la corriente. El conjunto de vertebrados incluye otros cuatro taxones extintos, incluido un carnívoro (Panthera atrox) y tres ungulados (Equus sp., Oreamnos harringtoni, Euceratherium collinum) y el primer registro de lince canadiense (Lynx canadensis) de la Great Basin. Si es contemporáneo, el conjunto en su conjunto indica un entorno abierto de pastizales/artebrisa/tundra en Spring Valley durante el Pleistoceno tardío, con bosques de coníferas en las laderas de las montañas frente a este valle y donde se encuentra la cueva. Aunque la entrada a la cueva ahora está bloqueada por el astrágalo hundido y la descomposición, en el Pleistoceno probablemente era una gran abertura accesible en la base de un acantilado de piedra caliza, con un flujo de corriente que emerge y fluye hacia el valle durante el Pleistoceno tardío, cuando los osos y otras especies posiblemente usaron la cueva como refugio o guardia.

Labor-of-Love Cave is a single-chamber cave formed by stream flow through limestone bedrock in the Schell Creek Range, White Pine County, Nevada (Fig. 1). It was first opened and explored by members of a caving organization in Ely, Nevada, the High Desert Grotto, over a series of visits from December 1981 to January 1982. When first exploring this cave, Grotto members began finding large bones along the stream bank and in pools towards the rear of the cave, which extends ~80 m into the limestone before disappearing further underground (Fig. 2). Recognizing the paleontological importance of this site, Grotto

*Corresponding author: emslie@uncw.edu

SDE orcid.org/0000-0001-9112-5690 JIM orcid.org/0000-0002-4975-022X
member Sam Baker contacted the senior author, leading to the recovery of fossil material that consisted mostly of bones from partial associated skeletons of a black bear (*Ursus americanus*) and at that time the first known associated skeleton of an extinct giant short-faced bear (*Arctodus simus*). One possible bone of grizzly bear (*Ursus cf. U. arctos*) also...
was recovered. All of this material was described by Emslie and Czaplewski (1985) and deposited at the Los Angeles Museum of Natural History (LACM), California, under 2 locality numbers: LACM Locality 4949 (fossil material collected inside the cave) and LACM Locality 5044 (a small collection of fossils found by Grotto members while excavating a passage to open the cave; Fig. 3, left). Initial attempts at radiocarbon analysis of 2 bones from the bears failed to provide enough collagen for reliable dates at that time, possibly due to extensive leaching and long-term immersion of the bones in water.

Further research in the cave in summer 1985, including excavations at 2 areas along the stream channel, resulted in the recovery of additional fossil material that was also deposited at LACM, but until now this material has not been analyzed or reported. Shortly after this work was completed, the U.S. Forest Service installed a gate to protect the cave and its paleontological resources. In summer 2018, U.S. Forest Service personnel found additional bones along the stream channel in the cave and contacted the authors to request assessment of this cave and recommendations for future management. Subsequently, the cave was revisited on 26 July 2018 which resulted in a third collection of fossils from the stream bank and pools, all deposited at LACM. This third collection prompted the authors to complete a detailed analysis of the cave and its fossil contents as well as to attempt again to obtain radiocarbon ages on this vertebrate assemblage.

Here we present a description of all fossil material collected at Labor-of-Love Cave in 1985 and 2018. Excavation procedures and methods from 1985 are detailed below. We also now provide the first reliable radiocarbon ages on teeth and bone from this cave. The vertebrate fauna from this cave provides new records of late Pleistocene mammals in eastern Nevada, the east-central Great Basin.

Cave Excavations and Mapping

An initial description and map of Labor-of-Love Cave was provided by Emslie and Czaplewski (1985), as well as an analysis of the partial skeletons of the 2 bear species (*U. americanus* and *A. simus*), 1 bone of possible grizzly bear (*Ursus cf. U. arctos*), and some unidentifiable artiodactyl remains. At the time of this initial research, 2 areas of bone concentrations (BC) at the rear of the cave, BC-1 and BC-2, were mapped, and all exposed bones were collected on 1 August 1982 with the assistance of personnel from the Bureau of Land
Management and the U.S. Forest Service, members of the High Desert Grotto, and 2 curators from LACM. Following this work, the intent of the senior author was to return to the cave in summer 1983 for more detailed mapping and sampling of exposed strata and gravel bars along the stream bank, but high water levels of the stream prevented entrance into the cave. However, in July 1985 water levels had receded and the cave was again accessible and further research was completed, including a more detailed map of the cave passage and a summary of the stratigraphy of cave sediments. Excavations were conducted in 2 locations, and sediments were screen washed in the cave stream to recover additional fossil remains, using window screen (0.16-cm mesh).

The cave was mapped by placing line datum (LD) points (large aluminum nails) along the cave passage from the entrance to BC-2 at the rear of the cave. A line was extended between datum points, its bearing recorded from true north using a Brunton compass, and cave width and height was measured at various points along the line while the map was sketched. Seven datum points were established in this manner, LD 1–7, with LD 1 located where the stream is first encountered when entering the cave from a crawlway at the base of the limestone cliff (Fig. 2).

During this mapping, it was noted that at least 3 flowstone shelves are evident at various points along the lateral sides of the cave passage. These shelves were designated Shelf 1, 2, and 3, with Shelf 1 as the lowest or closest to the current water level of the stream. Shelf 1 is undercut by the stream in several places, and some of the stalagmites situated on this shelf are tilted as a result of its gradual collapse (Fig. 3, right). A dense concentration of bone exposed on Shelf 1 was located near LD 3 and chosen for excavation and sampling, designated as Area 1 Shelf 1. Two additional datum points were established near this concentration to facilitate mapping of in situ bone: LD 3B and 3C. All bones longer than ~5 cm were measured from LD 3C for orientation, strike, and dip, using a Brunton compass. Excavated sediments were measured by volume and sieved in the stream with window screen. Excavations proceeded to a depth of 16 cm on this shelf before the matrix became too hard to excavate bones intact. A total of 22 liters (L) of sediments was screened in this manner, and all sediments and bone in the screen were saved for sorting in the laboratory. An additional 2.0 L of unscreened sediment also was saved. A total of 29 bones were measured in situ before excavations ceased due to difficulty in excavating them intact from the compacted matrix. A profile of the sediments on top of this shelf indicated that there are several stratigraphic layers: an upper silt (3 cm thick), a sand/gravel lens (6 cm thick), and a lower silt and rock (13 cm thick) overlying the flowstone shelf (Fig. 4). Most of the bone recovered was found at the interface between the sand/gravel and lower silt layer.

Excavations were next conducted at another location where bone was exposed at Area 2 near LD 4 (Fig. 2). All 3 flowstone shelves are visible at this location on either side of the cave passage, but bone was exposed only on Shelf 2, which could be further subdivided into Shelf 2 and 2B. An ungual phalanx (hoof) of *Equus* sp. was exposed on Shelf 2B (not collected), and no bone was visible on Shelves 1, 2, or 3. A second datum (LD 4B) was
established near the bone concentration on Shelf 2B, and a cross section of the cave passage was mapped at this point (Fig. 2). Sediment (0.75 L) was collected from a lower section, and an additional 2.0 L was collected from an upper section of Shelf 2B for screening in the laboratory.

Bone and sediment in the pool at Gravel Bar (GB) 2 at BC-1 was sampled next. Numerous bones of artiodactyls and a mandible of *Lynx rufus* were exposed on the bottom of the pool and collected. Two liters of sediment was collected from the bottom of the pool and saved for screening in the laboratory, while an additional 15 L was screened in the cave. BC-2 at GB 4 was sampled by dividing it into 2 areas designated GB 4A and 4B, the former located just downstream from the main concentration of *Arctodus* bones in BC-2 that were collected in 1982. Fifteen liters of sediment was screened in this area, with an additional 15 L screened at 4B where bear phalanges and metapodia were recovered. It also was apparent at GB 4B that the bear bones were eroding in situ from the gravel lens exposed at this location. This completed the work in the cave.

On 26 July 2018, the senior author, D. Powell, L. Coats, and N. Bolton entered the cave to evaluate its contents and collect exposed fossil material. It was noted that the cave was relatively unchanged since the 1980s, with all major cave formations intact. The cave air temperature was measured to compare to measurements taken in 1985. Air temperatures in 1985 were 13.5 °C at LD 2, 11.5 °C at Area 2, and 11 °C at BC-2, indicating increasingly cooler temperatures toward the rear of the cave; in 2018 air temperature was recorded at 12 °C at BC-2, suggesting a warming of 1 °C since 1985. Water temperature of the stream was measured at 10.5 °C at Area 2 in 1985, and 11 °C in 2018. Line datum points were still present with orange flagging tape and labels. Newly exposed bones were observed in the stream pools at BC-1 and BC-2. A few other bones and isolated teeth were found at various points along the stream channel, some of which had been noted in 1985. These bones, as well as those in the pools at BC-1 and BC-2, were collected, and included an additional mandible of *U. americanus* and various fragmentary skeletal elements of *A. simus* from each pool, respectively. All bones were transported to LACM for accession with the rest of the collection from 1982 and 1985.

Radiocarbon Dating

Initial attempts to obtain direct ages on the associated skeletons of *A. simus* and *U. americanus* from Labor-of-Love Cave in 1982 failed to provide reliable dates due to lack of sufficient collagen in the highly leached bones (Emslie and Czaplewski 1985). However, subsequent development of accelerator mass spectrometry (AMS) dating, which requires only a minute amount of purified collagen, now provides an opportunity to once again obtain radiocarbon ages on *A. simus* and other taxa represented in the vertebrate fauna at this locality. We selected primarily teeth for this analysis as they tend to preserve collagen better than bone. Nine teeth and one bone were selected from various locations in the cave for radiocarbon analysis by DirectAMS (Bothell, WA). All samples except one right lower third incisor of *A. simus* produced sufficient purified collagen for reliable analysis (Table 1). Radiocarbon ages were calibrated to cal yr BP using Calib 7.0.4 and the IntCal13 calibration curve (Stuiver and Reimer 1993) and are reported as 2σ ranges (Table 1).

Fossil Identifications

All identifications given below and in Table 2 were completed by direct comparison using the skeletal collections of mammals and birds, and the vertebrate paleontological collections at the George C. Page and Los Angeles County Museum of Natural History (LACM), the University of California Museum of Vertebrate Zoology (UCMVZ) and Museum of Paleontology (UCMP), Berkeley, and the U.S. National Museum, Smithsonian Institution (USNM). Unless otherwise noted below, specific identifications were based on similarity in size and morphological features to modern and fossil skeletal material in the collections at the above museums. All fossil material is catalogued with LACM numbers given in parentheses after each specimen listed below. Upper and lower dentition are indicated by upper- and lowercase letters for incisors (I/i), canines (C/c), premolars (P/p), and molars (M/m) followed by the number of the tooth in the tooth row. Measurements were taken with digital calipers to the nearest 0.1 mm.
REFERRED MATERIAL.—Distal half right mandible with i1 (123867).

DISCUSSION.—The size and features of this specimen compare well with the modern marmot Marmota flaviventris.
species; *M. caligata* is slightly larger and more robust. Other characters used to distinguish *M. flavicentris* from other scurid and *Marmota* species used here are described by Heaton (1985). Marmots are no longer present in the area of the cave, though 2 records were reported by Hall (1946) from the northern Snake Range.

Order Perissodactyla
Family Equidae
Equus sp.
REFERRED MATERIAL.—Right M2 (123866), right partial cheek tooth (123868).

Order Artiodactyla
REFERRED MATERIAL.—Lower incisor (123865), proximal fragment of left mandible (123864).

LACM Locality 4949
Class Aves
Order Falconiformes
Falco sparverius
REFERRED MATERIAL.—Area 1 Shelf 1: distal right tarsometatarsus (161478).
Buteo sp.
REFERRED MATERIAL.—Area 1 Shelf 1: ungual phalanx (161477).
Order Strigiformes
Bubo virginianus
REFERRED MATERIAL.—Area 1 Shelf 1: left tarsometatarsus missing ends (161479).
Order Passeriformes
REFERRED MATERIAL.—Area 1 Shelf 1: distal right tarsometatarsus (161480).
Class Mammalia
Order Insectivora
Family Soricidae
Sorex sp.
REFERRED MATERIAL.—GB 4B: proximal half right mandible without teeth (161474).
Order Chiroptera
REFERRED MATERIAL.—GB 4B: proximal radius (161475).
Order Carnivora
Family Mustelidae
Mustela cf. *M. erminea*
REFERRED MATERIAL.—GB2: right mandible with c1, p2–m1 (161472).
MEASUREMENTS.—The specimen measures c1–m1 length, 13.0 mm, p2–m1 length, 11.4 mm, m1 length and breadth, 5.2 and 1.7 mm.
DISCUSSION.—Measurements of this specimen compare well in size to modern *M. erminea*. Three specimens of *M. frenata* were examined at LACM, and all were larger and had a broader m1 than 161472. Fossil records of *M. erminea* also have been reported from Smith Creek Cave, Snake Creek Burial Cave, and Owl Cave #1 in the Snake Range of eastern Nevada (Mead and Mead 1989).

Family Canidae
Vulpes cf. *V. macrotis*
REFERRED MATERIAL.—Area 1 Shelf 1: right M1 (161473).
MEASUREMENTS.—The M1 measures 9.3 mm from lateral to internal edges and 7.6 mm from mesial to distal.
DISCUSSION.—See Heaton (1985) for characters used here to distinguish *Vulpes* from *Urocyon*. This specimen is distinctly smaller than *Vulpes vulpes* and compares well in size and features to 2 other fossil *V. macrotis* from McKittrick Brea (California; Locality 138: LACM 2084, 9.8 and 7.9 mm, LACM 107698, 10.8 and 7.2 mm).

Order Ursidae
Family Tremarctinae
Arctodus sinus
REFERRED MATERIAL.—GB 4, BC-2: right I3, humeral third of right scapula, 9 rib fragments, right metacarpal I (122434); GB 4A, BC-2: right i1 or 2 (122434); GB 4B, BC-2: left unciform, left pisiform, left scapho-lunar, right scapho-lunar, right navicular, distal right fibula, left metacarpal III, right metacarpal V, right metatarsal II, III, and V, 6 proximal phalanges, second phalanx, ungual phalanx (122434).
DISCUSSION.—These specimens were recovered from the same pool (BC-2) where an associated partial skeleton of *A. sinus* was recovered in 1982 (Emslie and Czaplewski 1985). Identification to *A. sinus* was confirmed with comparison to fossil material at Rancho La Brea. As none of the above reported elements were recovered in the
original collection, specimens 122434 likely represent the same individual recovered in 1982. The right I3 and i3 were submitted for radiocarbon analysis, but only the former specimen produced sufficient collagen for a date (Table 1).

Family Ursidae

Ursus americanus

REFERRED MATERIAL.—GB 3, BC-1: left mandible with c1 and m2 (161347); left C1 (161326).

MEASUREMENTS.—The m2 measures length, 19.7 mm, breadth, 12.5 mm.

DISCUSSION.—The mandible represents a larger individual compared to 2 matching mandibles (122435) recovered from BC-1 in 1982 and reported by Emslie and Czaplewski (1985). Specimen 161347 is slightly larger than those of 122435 and compares well in size and features to 2 modern male U. americanus (LACM 92304 and 38833). Specimen 161326 is slightly smaller than canines from 122435. The c1 from 161347 was consumed for radiocarbon analysis (Table 1).

Family Felidae

Panthera atrox

REFERRED MATERIAL.—Area 1 Shelf 1: proximal left radius (161469); second phalanx (161470).

MEASUREMENTS.—The radius shaft measures breadth, 18.7 mm, depth, 13.2 mm; the phalanx measures length, 28.3 mm, proximal breadth and depth, 15.4 and 13.0 mm.

DISCUSSION.—These specimens compare well in size and features to fossil specimens of P. atrox from Rancho La Brea, California, as well as to a skeleton of P. leo at LACM. The fossils were also compared to Pleistocene specimens of Puma concolor from Rancho La Brea and are distinctly larger than this California species. Characters used to distinguish Panthera and the specimens from Labor-of-Love Cave from Smilodon are from Merriam and Stock (1932).

Lynx canadensis

REFERRED MATERIAL.—Area 1 Shelf 1: complete left femur (161468; Fig. 5).

MEASUREMENTS.—See Table 3.

DISCUSSION.—This specimen is distinct from femora of male and female L. rufus by its longer, straight and slender shaft (Table 3). Measurements of 161468 overlap or are slightly larger than those from 3 modern specimens of extant L. canadensis, and are larger than those of L. rufus. This is the first fossil record of L. canadensis from Nevada, and the species has not been reported from any other Pleistocene deposit in the Great Basin (Grayson 2011). It previously has been reported from Pleistocene deposits in the Yukon, Alaska, Idaho, Utah, and Wyoming (Miller 1976, Kurtén and Anderson 1980).

Lynx rufus

REFERRED MATERIAL.—GB 2: left mandible with c1, p2–m1 (161460); left radius (161464); lumbar vertebra (61463); distal half left femur (161465); proximal right tibia (161466); Area 1 Shelf 1: right P4 (161462); left 2nd metatarsal (161467); GB 4A: right c1 (161461).
Table 3. Measurements of femora from modern specimens of male and female *Lynx canadensis* and *L. rufus* compared to the complete left femur (LACM 161468) referred to *L. canadensis* from Labor-of-Love Cave (LOL Cave), White Pine County, Nevada. All measurements follow the methods of von den Driesch (1976) and are given in millimeters, with mean and standard deviation (SD) provided by sex for *L. rufus*. UCMVZ = University of California Museum of Vertebrate Zoology, Berkeley, CA.

<table>
<thead>
<tr>
<th>Catalogue number</th>
<th>Sex</th>
<th>Length</th>
<th>Proximal breadth</th>
<th>Proximal depth</th>
<th>Least breadth shaft</th>
<th>Least depth shaft</th>
<th>Distal breadth</th>
<th>Distal depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lynx canadensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UCMVZ 4362</td>
<td>F</td>
<td>205</td>
<td>33.8</td>
<td>15.5</td>
<td>13.3</td>
<td>11.4</td>
<td>27.4</td>
<td>29</td>
</tr>
<tr>
<td>UCMVZ 41067</td>
<td>F</td>
<td>186</td>
<td>30.4</td>
<td>14.1</td>
<td>11.6</td>
<td>9.7</td>
<td>25.1</td>
<td>25.5</td>
</tr>
<tr>
<td>UCMVZ 9519</td>
<td>M</td>
<td>204</td>
<td>33.3</td>
<td>15.6</td>
<td>13.5</td>
<td>11</td>
<td>27.8</td>
<td>29.3</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>198.3</td>
<td>32.5</td>
<td>15.1</td>
<td>12.8</td>
<td>10.7</td>
<td>26.8</td>
<td>27.9</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>10.69</td>
<td>1.84</td>
<td>0.84</td>
<td>1.04</td>
<td>0.89</td>
<td>1.46</td>
<td>2.11</td>
</tr>
<tr>
<td>Lynx rufus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LACM 31089</td>
<td>F</td>
<td>154.1</td>
<td>29</td>
<td>13.1</td>
<td>11</td>
<td>9.1</td>
<td>25.5</td>
<td>24</td>
</tr>
<tr>
<td>LACM 52229</td>
<td>F</td>
<td>164</td>
<td>28.3</td>
<td>14.1</td>
<td>11.9</td>
<td>9.6</td>
<td>24.4</td>
<td>23.6</td>
</tr>
<tr>
<td>LACM 31665</td>
<td>F</td>
<td>159</td>
<td>29</td>
<td>14.1</td>
<td>12</td>
<td>10.6</td>
<td>26.4</td>
<td>25</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>159.0</td>
<td>28.8</td>
<td>13.8</td>
<td>11.6</td>
<td>9.8</td>
<td>25.4</td>
<td>24.2</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>4.95</td>
<td>0.40</td>
<td>0.58</td>
<td>0.55</td>
<td>0.76</td>
<td>1.00</td>
<td>0.72</td>
</tr>
<tr>
<td>Lynx Cave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LACM 712</td>
<td>M</td>
<td>169</td>
<td>28.7</td>
<td>14.3</td>
<td>11.9</td>
<td>9.8</td>
<td>25.1</td>
<td>26.1</td>
</tr>
<tr>
<td>LACM 45026</td>
<td>M</td>
<td>159</td>
<td>27.3</td>
<td>12.8</td>
<td>11.7</td>
<td>10</td>
<td>25.2</td>
<td>23.9</td>
</tr>
<tr>
<td>LACM 45027</td>
<td>M</td>
<td>168</td>
<td>30.5</td>
<td>14.5</td>
<td>11.5</td>
<td>10.3</td>
<td>27.5</td>
<td>26.9</td>
</tr>
<tr>
<td>LACM 52218</td>
<td>M</td>
<td>167</td>
<td>31.2</td>
<td>13.6</td>
<td>12.2</td>
<td>10.6</td>
<td>25.8</td>
<td>25.5</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>165.8</td>
<td>29.4</td>
<td>13.8</td>
<td>11.9</td>
<td>10.2</td>
<td>25.9</td>
<td>25.6</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>4.57</td>
<td>1.77</td>
<td>0.77</td>
<td>0.22</td>
<td>0.35</td>
<td>1.11</td>
<td>1.27</td>
</tr>
<tr>
<td>LOL Cave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LACM 161468</td>
<td></td>
<td>195</td>
<td>34</td>
<td>15.9</td>
<td>13.6</td>
<td>11.9</td>
<td>32.6</td>
<td>27.4</td>
</tr>
</tbody>
</table>
Order Rodentia
Family Sciuridae

Marmota flaviventris

REFERRED MATERIAL.—Area 1 Shelf 1: partial cranium (161360); right mandible with i1 (161361); 4 incisor fragments (161363–161366); left M3 (161372); right M3 (161373); right P4 (161368); left P4 (161367); 3 left m1 or m2 (161369–161371); proximal left ulna (161362); proximal right femur (161358); Area 2 Shelf 2B: right mandible with no teeth (161357); GB 2: 2 incisor fragments (161355–161356); GB 4A: right tibia (161359); 1 m upstream from LD 6: right I1 (161339).

DISCUSSION.—See Heaton (1985) for identification characters of *Marmota* used here. Numerous fossils of this species also were reported from most excavated layers at Smith Creek Cave, Snake Range, Nevada (Miller 1979), and Crystal Ball Cave, Snake Valley, Utah (Heaton 1985).

Family Cricetidae

Neotoma sp.

REFERRED MATERIAL.—Area 1 Shelf 1: maxilla with left M3 (161374); left maxilla with M2–3 (161375); 8 right M1 (161409–161416); 10 left M1; 5 right M2 (161431–161435); 3 left M2 (161419–161421); 3 right M3 (161450–161452); 2 left M3 (161444–161445); right mandible with i1 (161377); proximal right mandible without teeth (161378); 7 right m1 (161402–161408); 19 left m1 (161379–161397); 6 right m2 (161436–161441); 9 left m2 (161422–161430); 1 right m3 (161453); 3 left m3 (161446–161448); GB 2: 1 right M1 (161417); 1 left M1 (161418); 1 left M2 (161442); 1 right M3; 1 left M3 (161449); 4 left m1 (161398–161401); 1 right m2 (161443); 2 right m3 (161454–161455); GB 4A: left mandible with i1 (161376); right M1 (161418); left M2, left m1 and m2; Pool below LD6 at GB 3: right mandible with i1 and m2 (161336); right femur without epiphyses (161337); right femur (161338).

Subfamily Microtinae

REFERRED MATERIAL.—GB 4A: left m1 (161457); left m3 (161458).

Order Lagomorpha
Family Ochotonidae

Ochotona princeps

REFERRED MATERIAL.—Area 1 Shelf 1: maxilla with left P4–M2 and right M3 (161348).

DISCUSSION.—We recognize that there are few dental characters available to identify the 2 species of *Ochotona* (*O. princeps* and *O. collaris*) in North America. Here we are basing our identifications on extant biogeography and prevalence of *O. princeps* in the Great Basin today. This species also was abundant in all excavated levels at Smith Creek Cave and Cathedral Cave, and its dung was recorded in packrat middens within Smith Creek Canyon, Snake Range, and elsewhere in southern Nevada (Miller 1979, Mead and Spaulding 1995, Jass 2009).

Family Leporidae

Lepus sp.

REFERRED MATERIAL.—Area 1 Shelf 1: distal left tibia (161349); right astragalus (161350); GB 2: proximal left third metatarsal (161351).

Sylvilagus sp.

REFERRED MATERIAL.—Area 1 Shelf 1: left p3 (161352); GB 2: right radius (161353); distal half left femur (161354); GB 3: right tibia missing proximal end (161355); juvenile left tibia missing distal end (161334).

Order Perissodactyla
Family Equidae

Equus sp.

REFERRED MATERIAL.—Area 1 Shelf 1: left M1 or M2 (161332); 21.8/c4977 below LD 6: right deciduous I2 (161342).

MEASUREMENTS.—161332 measures length, 23.2 mm, and breadth, 22.8 mm.

DISCUSSION.—Specimen 161332 was consumed for radiocarbon analysis (Table 1).

cf. *Equus* sp.

REFERRED MATERIAL.—Area 2, upper Shelf 2B: proximal shaft fragment of left tibia (161333).

DISCUSSION.—Tentative identification based on size, thickness of bone, and shape compared to other fossil *Equus* tibiae from Rancho La Brea, California. This specimen was consumed for radiocarbon analysis (Table 1).

Order Artiodactyla

REFERRED MATERIAL.—Area 1 Shelf 1: distal mandible with no teeth (161534); GB 2: shaft of distal left humerus (161535); medial fragment of right innominate (161536).
Family Cervidae

Odocoileus sp.

REFERRED MATERIAL.—Area 1 Shelf 1: right deciduous P3 (161526); GB 2: juvenile distal left dentary with DP1–3 (161525).

Family Bovidae

Oreamnos harringtoni

REFERRED MATERIAL.—Area 1 Shelf 1: right M1 (161513); right M2 (161514); left M1 (161330); right radius missing distal end (161515); left metacarpal missing proximal end (161516); left metatarsal missing distal end (161517).

MEASUREMENTS.—161513 measures length and breadth, 14.9 and 14.1 mm; 161514 measures length and breadth, 20.1 and 15.4 mm; 161330 measures length, 18.3 mm, and depth of protocone and metaconule, 14.2 and 11.0 mm; 161515 measures proximal breadth and depth, 34.7 and 19.8 mm, and least breadth and depth of shaft, 22.3 and 13.5 mm; 161516 measures length, ~110 mm, and distal breadth and depth, 30.0 and 20.7 mm.

DISCUSSION.—See Mead and Lawler (1994) for identification criteria used here for this extinct species compared to the living *O. americanus*.

Specimen 161330 was consumed for radiocarbon analysis (Table 1).

Ovis canadensis

REFERRED MATERIAL.—Area 1 Shelf 1: right M1 (161331), right M1 or M2 (161507); distal metacarpal (161512); proximal left metatarsal (161511); GB 2: proximal left radius (161509); proximal left metacarpal (161510); BC-1: left M3 (123785); Pool below LD 6 at GB 3: left radius with no proximal epiphysis (161344).

MEASUREMENTS.—161331 measures length, 19.2 mm, and depth of protocone and metaconule, 11.3 and 10.2 mm.

DISCUSSION.—Data in Mead and Lawler (1994) and from modern and fossil comparative specimens of both *Ovis* and *Oreamnos* were used to identify the Labor-of-Love Cave fossils as *Ovis*.

Ovis or Oreamnos

REFERRED MATERIAL.—Area 1 Shelf 1: petrosal (161506); right proximal ulna (161495); right distal radius (161494); 4 partial distal metapodia (161503–161505, 161537); 3 first phalanges (161496–161498); 2 second phalanges (161499–161500); 2 ungual phalanges (161501–161502); GB 2: fragment of upper molar (161328).

DISCUSSION.—These fossils are too fragmentary for generic identification. Specimen 161328 was consumed for radiocarbon analysis (Table 1).

Euceratherium collinum

REFERRED MATERIAL.—Area 1 Shelf 1: right M2 (161329, medial right mandible with m2 (161528); distal left tibia (161519); distal metapodia (161521); 1 partial distal metapodia (161522); left calcaneum (161520); right cuneiform (161530); right scaphoid (161529); right lateral malleolus (161518); first phalanx (161532); proximal end first phalanx (161523); second phalanx (161524); GB 2: right M1 (161327), medial left calcaneum (161531); second phalans (161533); 1 m upstream of LD 6: 1st phalanx (161346); Pool below LD 6 at GB 3: distal metapodia encased in matrix (161345).

MEASUREMENTS.—161329 measures length, 27.8 mm, and depth of protocone and metaconule, 17.2 and 16.0 mm; 161528 m2 measures length and breadth, 28.1 and 15.5 mm; 161522 measures breadth and depth, 51.6 and 42.0 mm; 161518 measures length and depth, 25.8 and 21.0 mm; 161532 measures length, 55.5 mm, and proximal breadth and depth, 24.6 and 28.3 mm; 161523 measures proximal breadth and depth, 27.4 and 24.2 mm; 161524 measures length, 37.1 mm, and proximal breadth and depth, 20.8 and 17.0 mm; 161327 measures length, 22.6 mm (too fragmentary for breadth measurements); 161346 measures length, 58.7 mm, proximal breadth and depth, 24.0 and 27.4 mm, and distal breadth and depth, 21.6 and 16.9 mm; 161345 measures distal breadth, 37.5 mm.

DISCUSSION.—These specimens were identified based on similarities in size and morphological features to fossil *Euceratherium* specimens from San Josecito Cave, Mexico, housed at LACM, and Samwel and Potter Creek Caves, California, housed at UCMP. Specifically, the right m2 in specimen 161528 is nearly identical in morphology to a left m2 in specimen 192/8437 from San Josecito Cave. Further, the distal metapodia reported here compare well in size and characters to those from San Josecito Cave, including the size and...
shape of the lateral condyle. Additional comparisons were made with an m2 and distal metatarsal referred to Ovibos from Zaragosa Cave, Mexico (specimens not formally described). The m2 of this presumed Ovibos has a broader lateral re-entrant angle with an anterior occlusal edge remaining more squared laterally than in Euceratherium and the specimen from Labor-of-Love Cave. The distal metatarsal in Ovibos has a broader shaft and a distinct anterior groove, while the shaft is narrower with a shallow anterior groove in Euceratherium. The M2, 161327, was consumed for radiocarbon analysis (Table 1).

cf. Bison sp.

REFERRED MATERIAL.—Area 1 Shelf 1: right lateral malleolus (161527).

MEASUREMENTS: The specimen measures breadth and depth, 45.9 and 32.7 mm.

DISCUSSION.—This specimen is distinctly larger than those observed to be Euceratherium (see measurements for 161518 above) and compares well in size and features to Bison sp. If correct, this specimen represents a rare record of bison in the late Pleistocene of the Great Basin, where most records are from late Holocene archaeological contexts (Grayson 2006, 2011). At this time we know of no identification characters to adequately differentiate the morphology of the lateral malleolus of Bison from that of other large bovids and ovibovids.

DISCUSSION

Labor-of-Love Cave has yielded a diverse collection of vertebrates dominated by rodents, lagomorphs, carnivorans, and ungulates (Table 2). Five extinct species are represented, including 2 carnivorans (A. simus and P. atrox) and 3 ungulates (Equus sp., O. harringtoni, and E. collinum). Two other extant carnivorans were first reported from Labor-of-Love Cave by Emslie and Czaplewski (1985; Ursus cf. U. arctos and U. americanus) and are extralimital today. A third carnivoran, L. canadensis, represents the first fossil record for the Great Basin. This lynx also is rare in the fossil record within the 48 conterminous states, previously known only from Pleistocene deposits in Idaho, Utah, and Wyoming (Miller 1976, Kurtén and Anderson 1980). Other species in this collection are no longer found in this region of Nevada or are of limited occurrence, but these have been reported in other Pleistocene cave deposits in the Snake Creek Range (see below) and include O. princeps, M. flaviventris, Vulpes cf. V. macrotis, and O. harringtoni, indicating a widespread and common distribution of these species in this east-central region of the Great Basin. Hall (1946) documented 2 records of M. flaviventris sighted at Mt. Moriah and nearby Hendry Creek, northern Snake Range, and one record of V. macrotis in Spring Valley, the closest observations of these species to Labor-of-Love Cave (Fig. 1).

The stratigraphy and depositional history of fossils in Labor-of-Love Cave are complex. Most bones appear to be associated with gravel bars and gravel deposits along the cave passage. These gravel bars also extend below flowstone. Fine silt and sand layers above the gravel deposits indicate depositional periods with no or little stream flow, and some with gradual layering of sediments in pools of water. Most of these layers were eroded with subsequent increase in stream flow, which is probably when gravel layers and bones of the associated bear skeletons at BC 1 and 2 (GB 3 and 4) were exposed. Radiocarbon ages from teeth of Arctodus and Ursus at these bone concentrations indicate that the fossil deposits formed by ~26,000–27,000 cal yr BP. Farther downstream, GB 1 and 2 are slightly younger in age at ~23,000–26,000 cal yr BP. Area 1 Shelf 1 near the entrance of the cave produced ages of ~21,000–26,000 cal yr BP (Table 1). The in situ fossils recovered from this latter location, all within a gravel layer below silt deposits, further indicate that most fossils from the cave are from these gravel layers. Overall, these dates suggest erosion of cave sediments and exposure of bones during a period of increased moisture and meltwater that caused a higher volume of stream flow during postglacial warming following the LGM at ~26,500 cal yr BP. Few fossils were located on upper shelves in the cave, but one bone tentatively identified as cf. Equus sp. from Area 2 upper Shelf 2B had sufficient collagen to produce an age of ~36,000–37,000 cal yr BP, indicating that some pre-LGM deposits remain in the cave.

Taphonomic experiments with bone in streams indicate that most bone will orient with long axes parallel to the flow, depending in part on stream-flow energy as well as size,
density, articulation, and other factors of the bone (Lyman 1994). Statistics used to analyze 29 bones measured for orientation and dip at Area 1 Shelf 1 were calculated with package 'circular' (Agostinelli and Lund 2017) in R (R Core Team 2018), including functions mean.circular, sd.circular, and rayleigh.test. Bones tended to be oriented in the same direction, though not significantly so (mean orientation $= 201^\circ$, SD $= 90^\circ$; Rayleigh's $z = 0.292$, $P = 0.0829$; Fig. 6). In addition, the bones had a similar dip (6.3° below the surface, SD $= 4.5^\circ$; Rayleigh's $z = 0.997$, $P < 0.0001$). A biplot showed that dip was unrelated to orientation. At Labor-of-Love Cave, the small and constricted passage with no side channels indicates that the current stream flowing through the cave has not changed course since fossil bones were deposited along its banks. Stream flow direction at Area 1 Shelf 1 is at approximately 50° to 60° of true north, but at a point just before the channel turns abruptly to approximately 130°. This bend causes the current speed to slow and thus results in deposition of larger and denser bones, with orientations ranging from perpendicular to parallel with the stream flow. The measurements recorded here are in accordance with this type of stream deposition of bone, with no significant orientation present among the 29 bones measured (Fig. 6).

The taphonomic and radiocarbon analyses provide support that the vertebrate fauna at Labor-of-Love Cave was largely contemporaneous. The fauna as a whole is consistent with both montane forested environments as well as open sagebrush steppe tundra that was typical of intermontane valleys in the Great Basin. Large pluvial lakes dominated many of these valleys following the LGM. Labor-of-Love Cave is located at a transitional zone today, at the base of large limestone cliffs overlooking Spring Valley. Based on the mixture of boreal/alpine species (O. princeps,
M. flaviventris, Mustela cf. M. erminea), as well as lower-elevation, open-habitat species (Vulpes cf. V. macrotis, P. atrox, Equus sp., E. collinum), this fauna represents a non-analog vertebrate community not unlike other assemblages that date to the late Pleistocene in western North America.

The closest and best known late Pleistocene fossil locality to Labor-of-Love Cave is Smith Creek Cave, Smith Creek Canyon, Snake Range (Fig. 1). This site has yielded an extremely rich vertebrate fauna of mammals, birds, and herpetofauna (Howard 1952, Brattstrom 1976, Miller 1979, Mead et al. 1982). Packrat middens and plant remains from this cave and 6 other sites in this canyon, that range in age from >27,000 BP to modern, have been reported by Mead et al. (1982). Nearly all of the mammalian taxa identified at Labor-of-Love Cave have also been identified from Smith Creek Cave, except for L. canadensis, Ursus cf. U. arctos, A. sinus, and E. collinum. Floral and faunal remains from all sites in Smith Creek Canyon led Mead et al. (1982) to conclude that montane glaciers had moved down to 2900 m elevation in the late Pleistocene and that this canyon had an open mixed pine forest of Pinus flexilis, P. engelmannii, and P. longaeva, along with sagebrush (Artemisia sp.) and various grasses and shrubs. Based on the vertebrate fauna, a similar environment can be inferred for the slopes below Labor-of-Love Cave and the network of small drainages flowing eastward into Spring Valley. A pluvial lake likely existed in Spring Valley as well as in Snake Valley (Mead et al. 1982).

Another rich late Pleistocene locality is Crystal Ball Cave, Snake Valley, Utah (Fig. 1). This site also has produced a mixture of boreal/alpine and open-habitat taxa, including O. princeps, Lepus americanus, M. flaviventris, Lagurus curtatus, Martes americana, Equus spp., and 2 camelids (Heaton 1985). Lehman Caves to the south of Labor-of-Love Cave (southern Snake Range; Fig. 1) also has produced abundant fossil remains of Lepus sp., Marmota cf. M. flaviventris, as well as bones of V. macrotis, Antilocapra americana, and Desert Tortoise (Gopherus cf. G. agassizi; Rozaire 1964). Two additional cave localities (Snake Creek Burial Cave and Cathedral Cave, both on the east side of the Snake Range) have important yet not fully published faunas (Mead and Mead 1989, Mead et al. 1992, Bell and Mead 1998, Jass 2009, 2011, Jass and Bell 2010, 2011).

Conclusions

We have presented the first radiocarbon ages on Labor-of-Love Cave, as well as new records of vertebrate taxa in this region of eastern Nevada, east-central Great Basin. Our results indicate that Labor-of-Love Cave had a large accessible entrance during the late Pleistocene with a spring flowing within at least part of this cave. A variety of large and small mammals used the cave, and it is possible that both Ursus spp. and A. sinus visited the cave as a shelter or den, with individuals of these species dying in the cave and becoming buried in gravel and silt deposits. We infer that during a period of increased stream flow at the end of the LGM, these remains eroded from the gravel beds while the entrance of the cave became sealed by slump and rockfall until December 1981, when the entrance was uncovered and the fossils were discovered by High Desert Grotto members.

Most of the avian and mammalian vertebrate taxa from Labor-of-Love Cave also were reported from the extensive late Pleistocene deposits at Smith Creek Cave, along with other caves discussed previously. Exceptions include A. sinus, Ursus cf. U. arctos, L. canadensis, and E. collinum. Thus, Labor-of-Love Cave has added new records of the rich late Pleistocene vertebrate fauna present in this region of eastern Nevada during the full and postglacial period. Most of what is currently known for this region of Nevada and the east-central Great Basin is from localities in the Snake Range, all located at the westernmost boundary of the massive Lake Bonneville system. Labor-of-Love Cave provides the needed expansion of known faunal reconstruction for a region that is more distant from the Snake Range. The diversity of species recovered from these caves likely was due in part to the caves’ locations at transitional zones between valley bottoms with pluvial lakes and canyons with montane slopes of coniferous forest habitat.

Acknowledgments

We thank Doug Powell and the U.S. Forest Service, Ely, Nevada, who supported this research and who, with L. Coats and N. Bolton,
assisted with surface sample collections in 2018. Ray Danner provided assistance in using the R program to analyze bone data and orientation. Vanessa Rhue and Sam McLeod, Natural History Museum of Los Angeles County, provided valuable assistance in accessing the vertebrate paleontology collections and in cataloguing specimens from Labor-of-Love Cave. Aisling Farrell assisted with access to collections at the George C. Page Museum, Rancho La Brea. Dave Steadman, Chris Jass, and one anonymous reviewer provided many useful comments that improved this paper. This paper is dedicated to the memory of High Desert Grotto members Sam Baker and Bob Swain, and to Dennis Hone, whose dedication to preserving the fossil record in Nevada caves led to the completion of this research.

LITERATURE CITED

VERTEBRATE PALEONTOLOGY OF LABOR-OF-LOVE CAVE • Emslie and Mead 291

Published online 13 August 2020

Received 26 October 2019

Revised 7 January 2020

Accepted 19 March 2020